
LGN Input to Simple Cells and Contrast-Invariant Orientation
Tuning: An Analysis

TODD W. TROYER,1 ANTON E. KRUKOWSKI,2 AND KENNETH D. MILLER3

1Department of Psychology, Neuroscience and Cognitive Science Program, University of Maryland,
College Park, Maryland 20742; 2National Aeronautics and Space Administration Ames Research Center,
Moffett Field 94035-1000; and 3Departments of Physiology and Otolaryngology, W. M. Keck
Center for Integrative Neuroscience, Sloan-Swartz Center for Theoretical Neurobiology,
University of California, San Francisco, California 94143-0444

Received 8 June 2001; accepted in final form 12 February 2002

Troyer, Todd W., Anton E. Krukowski, and Kenneth D. Miller. LGN
input to simple cells and contrast-invariant orientation tuning: an analysis.
J Neurophysiol 87: 2741–2752, 2002; 10.1152/jn.00474.2001. We de-
velop a new analysis of the lateral geniculate nucleus (LGN) input to a
cortical simple cell, demonstrating that this input is the sum of two terms,
a linear term and a nonlinear term. In response to a drifting grating, the
linear term represents the temporal modulation of input, and the nonlinear
term represents the mean input. The nonlinear term, which grows with
stimulus contrast, has been neglected in many previous models of simple
cell response. We then analyze two scenarios by which contrast-invari-
ance of orientation tuning may arise. In the first scenario, at larger
contrasts, the nonlinear part of the LGN input, in combination with strong
push-pull inhibition, counteracts the nonlinear effects of cortical spike
threshold, giving the result that orientation tuning scales with contrast. In
the second scenario, at low contrasts, the nonlinear component of LGN
input is negligible, and noise smooths the nonlinearity of spike threshold
so that the input-output function approximates a power-law function.
These scenarios can be combined to yield contrast-invariant tuning over
the full range of stimulus contrast. The model clarifies the contribution of
LGN nonlinearities to the orientation tuning of simple cells and demon-
strates how these nonlinearities may impact different models of contrast-
invariant tuning.

I N T R O D U C T I O N

The tuning of visual neurons for the orientation of contrast
edges is the most thoroughly explored response property of cor-
tical neurons. Cortical layer 4 of cat primary visual cortex (V1) is
composed primarily of simple cells (Bullier and Henry 1979;
Gilbert 1977; Hubel and Wiesel 1962), i.e., cells with receptive
fields (RFs) containing oriented subregions each responding ex-
clusively to either light onset/dark offset (ON subregions) or dark
onset/light offset (OFF subregions). Hubel and Wiesel (1962) pro-
posed that these response properties arose from a corresponding,
oriented arrangement of inputs to simple cells from ON-center and
OFF-center cells in the lateral geniculate nucleus (LGN) of the
thalamus; such an arrangement is referred to as Hubel-Wiesel
thalamocortical connectivity. The usual formulation of this
so-called “feed-forward” model assumes that simple cell re-
sponse properties arise from a linear summation of these LGN
inputs, followed by a rectification nonlinearity due to spike

threshold (Carandini and Ferster 2000; Ferster 1987; Ferster
and Miller 2000).

The feed-forward model is challenged by the fact that spik-
ing responses in simple cells are invariant to changes in stim-
ulus contrast (Sclar and Freeman 1982; Skottun et al. 1987):
under this model, inputs at nonoptimal orientations are ex-
pected to be subthreshold at low contrast but become supra-
threshold at higher contrast. We have previously presented
simulation results showing that a simple form of strong “push-
pull” inhibition (inhibition induced by light in OFF subregions
or dark in ON subregions), combined with Hubel-Wiesel thal-
amocortical connectivity, is sufficient to overcome this diffi-
culty and robustly yield contrast-invariant orientation tuning
(Troyer et al. 1998). In this paper, we analyze the conditions
required to achieve contrast-invariant orientation tuning in
such a push-pull model.

In our previous work, we studied two versions of the push-pull
model. In one version (“network model”), the cortex was modeled
as a fairly realistic network of spiking neurons, each modeled as
a single-compartment conductance-based integrate-and-fire neu-
ron. The LGN responses were modeled as Poisson spike trains
sampled from the stimulus-driven LGN firing rates. The second
version (“conceptual model”) was much simpler. In this model,
both cortical and LGN neuronal activities were represented by
firing rates, and the only nonlinearity was the rectification of firing
rates at some threshold level of input (rates could not go below
zero). While the network model also included intracortical con-
nections from excitatory neurons, the conceptual model included
only direct thalamic excitation and thalamic-driven feed-forward
inhibition (meaning inhibition driven by LGN via inhibitory cor-
tical interneurons).1 Despite the differences, the two models pro-
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1 By referring to feed-forward inhibition, we refer to that component of the
inhibition driven by the LGN. A single inhibitory cell might be driven both by
LGN and by cortical cells, so that it could contribute both feed-forward and
feedback inhibition. In Troyer et al. (1998) we showed that the feed-forward
component of the inhibition was necessary and sufficient to yield contrast-
invariant tuning, and that the feedback component had no effect on orientation
tuning in the context of the model circuit studied there.

The costs of publication of this article were defrayed in part by the payment
of page charges. The article must therefore be hereby marked ‘‘advertisement’’
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

J Neurophysiol
87: 2741–2752, 2002; 10.1152/jn.00474.2001.

27410022-3077/02 $5.00 Copyright © 2002 The American Physiological Societywww.jn.org

Downloaded from journals.physiology.org/journal/jn (096.224.087.234) on July 30, 2020.



duced quantitatively similar orientation tuning curves.2 This sug-
gests that the simpler conceptual model retained the key elements
responsible for contrast-invariant orientation tuning in the more
complex model, and in particular that the rectification or threshold
nonlinearity is the primary nonlinearity that is essential for an
understanding of this tuning.

In this article, we characterize the conditions required for
contrast invariance in the conceptual model, which is simple
enough to allow analysis. We begin by deriving a general
equation for the total LGN input to a cortical simple cell
receiving Hubel-Wiesel thalamocortical connections, making
minimal assumptions other than that LGN responses can be
well-described by an instantaneous firing rate and that the total
LGN input to the simple cell is given by an appropriately
weighted sum of the LGN firing rates. We then show that, in
the case of a periodic grating stimulus, this equation is domi-
nated by two terms: a linear term, representing the sinusoidally
modulated part of the input, and a nonlinear term, representing
the mean input. Except at very low stimulus contrasts, this
nonlinear term grows with stimulus contrast due to the recti-
fication of LGN firing rates. We then examine how the com-
bination of this LGN input, LGN-driven push-pull inhibition,
and a cortical cell threshold can yield contrast-invariant orien-
tation tuning in two regimes. In one regime, representing all
but very low contrasts, contrast invariance of orientation tuning
can arise if the growth of the linear and the nonlinear input
terms have the same shape as a function of contrast. Further
analysis demonstrates that this condition should be at least
approximately true for a wide range of LGN models. In the
second regime, representing very low contrasts, the nonlinear
input term does not change with contrast, so that the stimulus-
induced input is simply given by the linear term, which scales
with contrast. In this regime, where the total input is small,
input noise results in a smoothed threshold. Over a wide range
of thresholds, this smoothing results in an input/output function
that is approximated by a power-law function (Miller and
Troyer 2002). The combination of input that scales with con-
trast and a power-law input/output function yields contrast-
invariance of tuning. Finally, we demonstrate that these two
mechanisms can combine to yield contrast-invariant tuning
over all contrasts.

An abstract of this work has appeared (Troyer et al. 1999).

R E S U L T S

LGN input to simple cells

Previous investigations into the origins of orientation selec-
tivity have made a variety of simplifying assumptions regard-
ing the nature of the LGN input to cortical simple cells. Often,
the visual stimulus is transformed directly into a pattern of
cortical input, ignoring important nonlinearities contributed by
LGN responses. In this paper we focus on periodic gratings,
i.e., stimuli that are spatially periodic in one dimension and
uniform in the other dimension. Our model is a purely spatial
model and ignores cortical temporal integration. We consider

an “instantaneous” pattern of LGN activity across a sheet of
cells indexed by the two dimensional vector x representing the
center of each LGN receptive field. Cortical output is derived
as a static function of this pattern of activity.

In this section, we demonstrate that the total LGN input to a
simple cell in response to a grating stimulus with contrast C,
orientation �, and spatial location given as a phase variable
�stim, can be well approximated by a function of the following
form

ILGN�C, �, �stim� � DC�C� � F1max�C�h��� cos ��stim� (1)

Equation 1 will be derived using a series of arguments dem-
onstrating, in sequential subsections, that

1) ILGN can be be written as a sum of two terms. One term
corresponds to a linear response model and represents input
that is reversed in sign if the sign of the receptive field is
reversed. The second term represents a nonlinear response to
the stimulus and is unchanged by an overall sign reversal of the
receptive field.

2) For periodic grating stimuli, the second term represents
the mean (DC) level of input averaged over all spatial phases,
while the first term represents a sinusoidal (1st harmonic or F1)
modulation of the input as a function of the grating’s spatial
phase.

3) The level of the mean input depends only on contrast.
The amplitude of the modulation can be factored into the
product of a function that depends only on contrast and a
function that depends only on orientation.

Input from a Gabor RF: general expression

We view the LGN as a uniform sheet of ON-center and
OFF-center X cells, and let LON(x) [LOFF(x)] denote the response
of the LGN ON (OFF) cell at position vector x at a particular time
t [for simplicity, we omit the time dependence in LON(x, t) and
LOFF(x, t)]. Initially, we make no explicit assumptions regard-
ing the relationship between ON and OFF cells responses. How-
ever, we expect ON and OFF cells at the same location to have
roughly opposite responses to changes in luminance. To extract
the ON/OFF difference we let Ldiff(x) � [LON(x) � LOFF(x)]/2.
Letting Lavg(x) � [LON(x) � LOFF(x)]/2 denote the average
LGN response at position x, we can rewrite LON(x) �
Lavg(x) � Ldiff(x) and LOFF(x) � Lavg(x) � Ldiff(x).

We assume that the spatial pattern of LGN connections to a
simple cell can be described by a Gabor function (Jones and
Palmer 1987b; Reid and Alonso 1995). For simplicity, we will
refer to this pattern of LGN connectivity as the receptive field
(RF) of the cell. We let the vector f RF represent the preferred
spatial frequency and orientation of the RF, and choose our x
coordinates so that f RF is parallel to the x1 axis and so that the
RF center is at the origin. Thus we write the Gabor RF as

G�x� � S exp��
x1

2

2�1
2 �

x2
2

2�2
2� cos �2��f RF�x1 � �RF�

S determines the overall strength, �1 and �2 determine the size,
and �RF the spatial phase of the Gabor RF. Positive values of
the Gabor, G�(x) � max [G(x), 0], give the connection
strength from ON cells, whereas the magnitude of the negative
values, G�(x) � �min [G(x), 0]�, gives the connection strength
from OFF cells. Note that G(x) � G�(x) � G�(x), while �G(x)� �

2 The two models differed at the lowest contrast studied, 2.5%, where the
network model but not the conceptual model maintained contrast-invariant
tuning. This difference arose because noise was present in the network model
but not in the conceptual model; adding noise to the conceptual model
eliminates this difference, see RESULTS.
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G�(x) � G�(x). Using a linear summation model, the total
input to the cortical cell is given by

ILGN �� dxG��x�LON�x� � G��x�LOFF�x�

� � dxG��x��Lavg�x� � Ldiff�x�� � G��x��Lavg�x� � Ldiff�x��

� � dx�G��x� � G��x��Ldiff�x� � �G��x� � G��x��Lavg�x�

� � dxG�x�Ldiff�x� � �G�x��Lavg�x� (2)

Thus the total input to a simple cell can be written as the sum
of two components: the result of a Gabor filter applied to
one-half the difference of ON and OFF cell responses, plus the
result of a filter obtained from the absolute value of the Gabor
applied to the average of ON and OFF cell responses. We will
call these the ON/OFF-specific and ON/OFF-averaged components
of the input, and will call �G(x)� the absolute Gabor filter.

In the common linear model of LGN input, the firing rate
modulation of OFF cells is assumed equal and opposite to ON

cell modulations at a given point x. Therefore Lavg(x) is a
constant equal to the average background firing rate of LGN
cells, and the ON/OFF-averaged term contributes only a stimu-
lus-independent background input to the cortex. As a result, the
linear model only considers the ON/OFF-specific component of
the LGN input. However, since LGN firing rates cannot be
modulated below 0 Hz, at higher contrasts the balance between
ON and OFF cell modulations cannot be maintained, and the
ON/OFF-averaged term grows with increasing contrast. Hence it
becomes important to retain both terms in modeling LGN
input.

Further insight into this decomposition can be gained by
considering, for any given cortical cell, the cell’s antiphase
partner: an imaginary cell that has identical Gabor receptive
field except for an overall sign reversal, so that ON subregions
(connections from ON cells) are replaced with OFF subregions
(connections from OFF cells) and vice versa. Then the ON/OFF-
specific term represents the component of LGN input that is
equal and opposite to a cell and to its antiphase partner, while
the ON/OFF-averaged term represents the input component that
is identical to a cell and to its antiphase partner. It is in this
sense that we call these the ON/OFF-specific and ON/OFF-aver-
aged input components, respectively. The decomposition into
these two components is key to the results presented below.

Input from grating stimuli

In this paper, we focus on responses to periodic gratings, i.e.,
stimuli that are spatially periodic in one dimension and uniform
in the other dimension. The periodicity of the gratings is
described by a two-dimensional spatial frequency vector f stim,
and we assume that LGN cells have circularly symmetric
receptive fields. Therefore the response of an LGN ON-center
cell is determined by its position relative to the grating:
LON(x) � lON(f stim � x), where lON(�) is some function of a
scalar variable � determining a cell’s location relative to the
periodic modulation of the overall LGN activity pattern. Sim-

ilarly, LOFF(x) � lOFF(f stim � x). Throughout we will assume
�f stim� � �f RF�. LGN spatial frequency tuning can be included
by writing LON(x) � FON(�f stim�)lON(f stim � x), where
FON(�f stim�) is the spatial frequency tuning of ON cells scaled so
that FON(�f RF�) � 1. Similar definitions apply for OFF cells.

Given that LGN activity is periodic with spatial frequency
f stim, the Lavg(x) and Ldiff(x) components of LGN activity can
each be written as a cosine series

Ldiff�x� � �
n�0

�

an
diff cos �n�2�f stim � x� � �̂n

diff�

Lavg�x� � �
n�0

�

an
avg cos �n�2�f stim � x� � �̂n

avg�

Here, 0 � �̂n
diff 	 2� and 0 � �̂n

avg 	 2� represent the phase
of each component.

Using these expansions, we can evaluate the integral in Eq.
2 and rewrite the total LGN input to a simple cell as the sum
of a pair of cosine series

ILGN � �
n�0

�

��nf stim�an
diff cos ��n

diff� � �
n�0

�

����nf stim�an
avg cos ��n

avg� (3)

�(nf stim) and ���(nf stim) are the amplitudes of the Gabor and
absolute Gabor filters, respectively, evaluated at the spatial
frequency vector nf stim (i.e., the amplitudes of the Fourier
transforms of G and �G� at this frequency). The phases are
�n

diff � �̂n
diff � �n

G and �n
avg � �̂n

avg � �n
�G�, where �n

G and �n
�G�

are the phases contributed by the Gabor and absolute Gabor
filters.

We reiterate that our model is a spatial model. The instan-
taneous spatial distribution of activity across a two-dimen-
sional sheet of LGN cells (described by adiff and aavg) is
multiplied by the appropriate Gabor filters to determine the
total LGN input to a cortical cell at a given time, and the
cortical response is assumed to depend instantaneously on this
input. For temporal patterns of input, such as a drifting or
counterphased grating, we simply assume that the cortical
responses can be computed as instantaneous responses to a
sequence of patterns of LGN activity that change in time. For
flashed stimuli, the model will apply to the degree that cortical
responses simply track the changing patterns of LGN activity
triggered by the flash.

Reduction to two terms

In this subsection, we argue that each of the two sums in Eq.
3 should be dominated by the contribution of a single term. In
particular, the ON/OFF-averaged sum is dominated by the zero
frequency (DC) term, and the ON/OFF-specific sum is dominated
by the first harmonic (F1) term. Having shown that this is the
case, we will have demonstrated that

ILGN � DC � F1 cos ��stim� (4)

where we have defined the phase of the stimulus to equal the
phase of the spatial modulation of LGN activity (�stim 
 �1

diff).
The dominance of the DC and F1 terms depends on a quanti-
tative examination of Eq. 3. Therefore we will evaluate the
relative magnitudes of the first six terms in each cosine series,
using a simple model of LGN responses to sinusoidal gratings.
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“DC” will be used to refer to the amplitude of the zero
frequency component (n � 0) of a cosine expansion, and “Fn”
to refer to the amplitude of the nth harmonic (e.g., F1 for
n � 1).

We consider a simple rectified-linear model of LGN re-
sponses. ON and OFF cells are assumed to have background
firing rates of 10 and 15 Hz, respectively, and response mod-
ulations are assumed to result from linear filter properties of the
LGN cells. Therefore a drifting sinusoidal grating stimulus
leads individual LGN cells to sinusoidally modulate their firing
rates with time, rectified at 0 Hz (Fig. 1, A and B). This means
that at each instant the spatial pattern of response across the
sheet of LGN cells is a rectified sinusoidal modulation. The
amplitude of the modulation of activity across LGN depends
on the contrast of the grating (Fig. 1C) and was calculated
using measured contrast response functions from cat LGN X
cells in response to drifting sinusoidal gratings. The phase of
the modulation is assumed opposite (180° apart) for an ON cell
and an OFF cell at the same position. This ignores the actual
spread of response phases for both ON and OFF cells (Saul and
Humphrey 1990; Wolfe and Palmer 1998). At low contrasts,
the stimulus-induced modulations of firing rates do not exceed
the background firing rates, and so the mean input does not
grow with contrast. However, once the stimulus-induced mod-
ulation is as large as the background firing rates—which occurs
at about 5% contrast—then the LGN firing rates rectify at 0 Hz
for each trough of the modulation (Fig. 1), and so increases in
contrast above 5% lead to an increase in the mean LGN input.

Using the measured contrast response functions, we com-
pute the magnitudes of an

diff and an
avg for a sinusoidal stimulus

grating at 20% contrast (white bars in Fig. 2, A and B, respec-
tively). The difference coefficients, an

diff, are small for n even.
This is because the difference between ON and OFF cell re-

sponses during the first half of a response cycle is nearly equal
and opposite to the response difference during the second half
of the cycle. The dominance of the difference by the F1
coefficient, a1

diff, results from the fact that LGN response mod-
ulations take the shape of a rounded “hump” of increased firing
rate occurring during each cycle of the stimulus grating. The
DC contribution, a0

diff, is largely due to the difference between
the background firing rates of ON and OFF cells. Examining the
average coefficients, an

avg, we see that the DC contribution
dominates, with a smaller contribution from the first few har-
monics. The dominance of the average by the DC component
follows from the fact that each hump of ON or OFF cell activity
fills out at least one-half of the cycle, and hence the average
activity undergoes only small modulation.

We now turn our attention to the Gabor filters. Since a Gabor
function is obtained by multiplying a sinusoid and a Gaussian,
the Fourier transform of G consists of a Gaussian convolved
with a pair of delta functions located at the positive and
negative frequencies of the sinusoid (Fig. 2C). The specific
parameter values used have been extracted from two sets of
experimental data. We started with Gabor parameters taken as
the mean values from measured simple cell RFs [Jones and
Palmer (1987b); full parameters are given in METHODS section
of Troyer et al. (1998)]. The length of each subregion was then
reduced so that the orientation tuning width of the F1 of the
total LGN input (38.0° half-width at half-height) matched the
mean tuning width of experimentally measured intracellular
voltage (Carandini and Ferster 2000). This was accomplished
by multiplying the standard deviation of the Gaussian envelope
in the direction parallel to the subregion by a factor of 0.58.
One important feature to note is that the width of the Gaussian
in Fourier space is similar to the preferred spatial frequency of
the Gabor RF. This condition will hold when the simple cell
RF has roughly two subregions; more subregions will narrow
this width. The absolute value of the Gabor, �G�, is obtained
by multiplying a Gaussian times the absolute value of a
sinusoid. Thus the Fourier transform ��� consists of a Gauss-
ian convolved with the Fourier series for the absolute value
of a sinusoid, which has only even harmonics (Fig. 2C). We
focus on the response at the optimal orientation, and fix the
stimulus spatial frequency to match the optimal spatial
frequency of the Gabor filter, i.e., f stim � f RF. In this case,
the multiples of the stimulus spatial frequency vector, nf stim,
fall on the peaks of the Gaussian-shaped humps in the Gabor
and absolute Gabor filters (Fig. 2, A and B, marked x). The
result is that the �(nf stim) coefficients are dominated by the
F1 (n � 1) component (Fig. 2A, gray bars), while the
���(nf stim) coefficients are dominated by the DC (n � 0) com-
ponent (Fig. 2B, gray bars).

Having calculated the values an
diff, an

avg, �(nf stim) and ���
(nf stim), we need only multiply the corresponding components
to calculate the ON/OFF-specific and ON/OFF-averaged compo-
nents of the total LGN input using Eq. 3. The results, shown by
the black bars in Fig. 2, A and B, demonstrate that only two
terms contribute significantly to the total LGN input. Since
both the Gabor filter � and the Fourier series for Ldiff are
dominated by the F1 component, 99.9% of the total power in
the diff terms is concentrated in the first harmonic. Similarly,
the avg terms are dominated by the DC, with 98.6% of the
power concentrated in the zero frequency (mean) component of
the input. Thus the approximation given by Eq. 4 is valid for

FIG. 1. Linear rectified model of lateral geniculate nucleus (LGN) response
to drifting sinusoidal gratings. A and B: response of ON and OFF cells to drifting
sinusoidal gratings of 2 and 32% contrast. C: modulation amplitude as a
function of contrast for ON and OFF cells (computed from F1 of spiking
response from Cheng et al. 1995, assuming background firing rates of 10 and
15 Hz, respectively, and a linear rectified model of LGN response; see
METHODS in Troyer et al. 1998).
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the rectified-linear model of LGN response used here, with
DC � ���(0)a0

avg and F1(C, �) � �(f stim)a1
diff.

Thus we have shown that the total LGN input to a cortical
simple cell in response to a periodic grating (Eq. 3) is expected
to be well-approximated by a sinusoidal modulation about
some mean level (Eq. 4). This was derived assuming a linear-
rectified LGN response model and a sinusoidal grating, but is
likely to hold for more general LGN response models and for
more general types of gratings. So long as the F1 of Ldiff is at
least as large as the other Fourier coefficients, the dominance
of the F1 in the Gabor filter will lead the ON/OFF-specific terms
to be dominated by the F1. Similarly, the ON/OFF-averaged
components will be dominated by the DC so long as the DC of
Lavg is at least as large as the other Fourier coefficients.

Orientation tuning

We now examine the orientation and contrast dependence of
the DC and F1 terms of the total LGN input. We express the
orientation � in degrees from the preferred orientation, i.e., 0
degrees is the optimal stimulus. Since the responses of indi-
vidual LGN cells are untuned for orientation, changing the
orientation of the stimulus will rotate this activity pattern, but
will leave the shape of the activity modulation unchanged.
Therefore the coefficients an

diff and an
avg that characterize the

activity modulation in response to a given stimulus do not
depend on stimulus orientation. Because we are assuming
that the spatial frequency �f stim� is fixed, the only remaining
stimulus parameter is the contrast, so we can write an

avg �
an

avg(C), an
diff � an

diff(C). Therefore the DC term in Eq. 4 can
be written as

DC�C, �� � ����0�a0
avg�C� � DC�C� (5)

That is, the DC term is untuned for orientation. This is a
mathematical restatement of the fact that the mean LGN input
to a cortical simple cell is equal to the sum of the mean
responses of its LGN input cells, weighted by their connection
strength. Because the mean response of each LGN cell is
orientation independent, so is the weighted sum of these mean
responses. Note that the DC term does depend on contrast,
since rectification makes average LGN activity increase with
increasing contrast for contrasts above 5% (Fig. 1).

We now turn our attention to the F1 term. First, we write the
spatial frequency vector of the stimulus in polar coordinates,
f stim � {�f stim�, �} and let �0 � �({�f stim�, 0}). Then we factor
the amplitude of the modulation as follows

F1�C, �� � ����f stim�, ���a1
diff�C� (6)

� �0a1
diff�C�����f stim�, ���/�0

� F1max�C�h���

F1max(C) � �0a1
diff(C) captures the contrast response at the

preferred orientation, and h(�) � �({�f stim�, �})/�0 captures the
orientation tuning of the Gabor RF, normalized so that at the
preferred orientation, h(0) � 1. Therefore the total LGN input
can be written in its final form

ILGN�C, �, t� � DC�C� � F1max�C�h��� cos ��stim� (7)

h(�) is determined by the evaluation of the filter G along the
circle of radius �f stim� (Fig. 2C). If the Gabor RF has two or
more subregions and the spatial frequency �f stim� � �f RF�, h(�)
is dominated by the contribution from the Gaussian centered at
f RF. In this case

h��� � exp����f RF� � �f stim� cos ����2/�2�̃x
2� � ��f stim� sin ����2/�2�̃y

2�� (8)

FIG. 2. Spatial frequency components of the contributions to the LGN input ILGN, for LGN response model shown in Fig. 1 at
20% contrast. Top: amplitude of coefficients of diff terms (A) and avg terms (B) in Eq. 3, for a sinusoidal grating stimulus. White
bars: magnitudes of an

diff or an
avg. Gray bars: magnitudes of �(nf stim) or ���(nf stim), when the stimulus is at the Gabor’s preferred

orientation. Black bars: magnitudes of the corresponding component of ILGN, i.e., of the product an
diff�(nf stim) or an

avg���(nf stim).
Gray, white, and black bars in A and B are separately scaled to yield the same total length. Bottom: contour plot of Gabor filter (C)
and absolute Gabor filter (D). Multiples of preferred spatial frequency (0.8 cycles/degree) at the preferred orientation are marked
x. Circle in C shows the location of the stimulus 1st harmonic as the stimulus ranges over all orientations.
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where �̃x � 1/�x and �̃y � 1/�y determine the dimensions of
the Gaussian envelope of the Gabor filter in Fourier space. For
�f stim�  �f RF�, h(�) takes on a more complex form. Qualitatively,
tuning narrows for �f stim� � �f RF� and broadens for �f stim� 	
�f RF�.

This concludes our analysis of the LGN input to a simple
cell. We now turn to the analysis of the conditions yielding
contrast-invariant orientation tuning.

C O N T R A S T - I N V A R I A N T O R I E N T A T I O N T U N I N G I :

H I G H E R - C O N T R A S T R E G I M E

Intracortical inhibition

A key to our model of contrast-invariant orientation tuning
at higher contrasts is the inclusion of strong, contrast-depen-
dent feed-forward inhibition. We will take the inhibition a cell
receives to be spatially opponent to, or antiphase relative to, the
excitation a cell receives; this is also known as a push-pull
arrangement of excitation and inhibition. By spatial opponency
of inhibition and excitation, we mean that in an ON subregion of
the simple cell RF, where increases in luminance evoke exci-
tation [i.e., where G�(x) � 0], decreases in luminance evoke
inhibition; the opposite occurs in OFF subregions [where
G�(x) � 0]. Since the LGN projection to cortex is purely
excitatory (Ferster and Lindström 1983), this inhibition must
come from inhibitory interneurons in the cortex. A simple
hypothesis that is consistent with a broad range of experimental
data is that a given simple cell receives input from a set of
inhibitory simple cells that collectively 1) have RFs roughly
overlapping that of the simple cell, 2) are tuned to a similar
orientation as the simple cell, and 3) have OFF subregions
roughly overlapping the simple cell’s ON subregions, and vice
versa (Troyer et al. 1998); that is, collectively a cell’s inhibi-
tory input has a receptive field like that of a cell’s “antiphase
partner.” This circuitry leads to inhibition that, like the inhibi-
tion observed physiologically, is spatially opponent to the
excitation a cell receives (Anderson et al. 2000a; Ferster 1988;
Hirsch et al. 1998), and has the same preferred orientation and
tuning width as a cell’s excitatory inputs from the LGN
(Anderson et al. 2000a; Ferster 1986).

The role of antiphase inhibition in cortical orientation
tuning can be understood quite generally by returning to our
decomposition of the LGN input into an ON/OFF-specific term
and an ON/OFF-averaged term. The ON/OFF-specific compo-
nent typically is tuned for stimulus parameters such as
orientation while the ON/OFF-averaged component typically
is untuned or poorly tuned. The ON/OFF-specific term repre-
sents input that is equal and opposite to a cell and to its
antiphase partner. Thus, for this component, the antiphase
inhibition goes down when LGN excitation goes up, and
vice versa. The net result is that strong antiphase inhibition
serves to amplify the well-tuned ON/OFF-specific component
of the LGN input. The ON/OFF-averaged term represents
input that is identical to a cell and to its antiphase partner.
If the antiphase inhibition is stronger than the direct LGN
excitation, the ON/OFF-averaged term elicits a net inhibitory
input that is poorly tuned for orientation but depends on
contrast. Thus antiphase inhibition serves to eliminate the
untuned component of the LGN input and replace it with a
net inhibition that sharpens the spiking responses driven by

the ON/OFF-specific tuned component of the input. This ar-
gument generalizes to any type of stimulus, transient or
sustained. We now work out the details of this for the case
of a drifting sinusoidal grating stimulus.

In our reduced model, we represent the set of inhibitory cells
providing inhibition to a cell by a single inhibitory simple cell.
This cell receives input from the LGN specified by a Gabor
function identical to that which specifies the input to the
excitatory cell except that the sinusoidal modulation of the RF
is 180° out of phase. The total LGN input to the inhibitory cell
is then

Iinh�C, �, �stim� � DC�C� � F1max�C�h��� cos ��stim � 180°�

� DC�C� � F1max�C�h��� cos ��stim�

For now, we will assume that the output spike rates for
cortical neurons result from a rectified-linear function of the
neuron’s input. The effects of smoothing this function will be
considered in the section on the Low-contrast regime. Given
this assumption, the inhibitory cell’s firing rate is

rinh�C, �, �stim� � ginh�DC�C� � F1max�C�h��� cos ��stim� � binh � 	inh�� (9)

where � �� denotes rectification, ginh is the gain of the input/
output function for the inhibitory cell, 	inh is spike threshold,
and binh is the amount of nonspecific input received at back-
ground. For simplicity, we assume that input to the inhibitory
cell never dips below threshold [i.e., DC(100) � F1max(100)
� binh � 	inh 
 0], allowing us to ignore inhibitory cell
rectification. This assumption is not unreasonable given the
experimental evidence suggesting that some inhibitory in-
terneurons have high background firing rates (Brumberg et
al. 1996; Swadlow 1998). Moreover, the more realistic
version of the model presented in Troyer et al. (1998)
included inhibitory cell rectification, and this had no signif-
icant impact on our results.

It is important to note that the model inhibitory cell
responds to all orientations, although it also shows orienta-
tion tuning. For nonpreferred orientations, for which h(�)
� 0, the cell still receives positive input due to the term
DC(C) in Eq. 9, which drives inhibitory response. This
inhibition is critical for overcoming the strong, contrast-
dependent LGN excitation that would otherwise drive exci-
tatory simple cells at the null orientation. The DC term
contributes an untuned platform to the inhibitory cell ori-
entation tuning curve, identical for all orientations, on
which the tuned response component due to the term con-
taining h(�) is superimposed. That is, the inhibitory cell
tuning follows the tuning of the total LGN input to a simple
cell, which includes both an untuned and a tuned compo-
nent. One of the key predictions of our model (Troyer et al.
1998) was that there should be at least a subset of layer 4
interneurons that show contrast-dependent responses to all
orientations (see DISCUSSION), which is embodied here in the
response of our single model inhibitory neuron.

To facilitate analysis, we assume that excitation and inhibi-
tion combine linearly, at least in their effect on spiking output.
Because this assumption ignores reversal potential nonlineari-
ties, the total input in our model should not be equated with the
membrane voltage, particularly for voltages near the inhibitory
reversal potential (see DISCUSSION). Letting w̃ denote the
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strength of the inhibitory connection, the total input to the
excitatory simple cell is

I�C, �, �stim� � ILGN�C, �, �stim� � w̃rinh�C, �, �stim�

� DC�C� � F1max�C�h��� cos ��stim�

� w̃ginh�DC�C� � F1max�C�h��� cos ��stim� � binh � 	inh�

� �1 � w�DC�C� � �1 � w�F1max�C�h��� cos ��stim�

� w�binh � 	inh� (10)

where we let w � w̃ginh denote the total gain of the feed-
forward inhibition, i.e., w depends on the transformation of
LGN input to inhibitory spike rate as well as on inhibitory
synaptic strength. Note that Eq. 10 assumes that disynaptic
inhibition arrives simultaneously with direct LGN excitation.
In reality there is a small time lag: in response to flashed
stimuli, feed-forward inhibition takes about 2 ms longer to
arrive than feed-forward excitation (Hirsch et al. 1998). This
lag is likely to be negligible even for transient stimuli and is
certainly negligible for drifting gratings at frequencies that
drive cells in cat V1 (	10 Hz). In addition, for drifting grat-
ings, even a larger lag would serve only to reduce the ampli-
fication of the modulation term due to withdrawal of inhibition,
since the DC term is time independent by definition.

Inhibition has opposite effects on the DC and F1 terms of the
total input: it acts to suppress the mean input [DC 3 (1 �
w)DC], while it enhances the modulation [F1 3 (1 � w)F1].
The increase in the modulation is due to the fact that, at any
given contrast, increases in LGN excitation are accompanied
by a withdrawal of cortical inhibition, while decreases of
excitation are accompanied by an increase of inhibition. A key
requirement of our model of contrast-invariant tuning is that
the inhibition be dominant (w � 1), i.e., the inhibitory input is
stronger than the direct input from the LGN. This implies that
the contrast-dependent increase in the mean input from the
LGN is not only suppressed, it is actually reversed (1 � w 	
0), so that the mean feed-forward input to the cortical simple
cell decreases with increasing contrast.

Contrast invariance

Given the assumption that output spike rate results from a
rectified linear function of the input, the excitatory spike rate is

r�C, �, �stim� � g��1 � w�DC�C� � �1 � w�F1max�C�h��� cos ��stim� � 	eff��

(11)

where 	eff � 	exc � bexc � w(binh � 	inh) is an effective
threshold that incorporates tonic inhibitory activity, nonspe-
cific input to the excitatory cell bexc and the excitatory-cell
spike threshold 	exc. Note that, after specifying the Gabor RF,
the cortical component of our model has only two free param-
eters, w and 	 eff; the gain factor g is simply a scale factor that
determines the magnitude of response without affecting tuning.

For the orientation tuning of the response to be contrast
invariant, we must be able to write r(C, �, �stim) as the product
of a contrast response function p(C) and an orientation tuning
function q(�, �stim). Since the F1 term is the only term that
depends on the orientation and phase of the stimulus, we look
for an expression of the form

q��, �stim� � g��1 � w�h��� cos ��stim� � z��

where z is some constant. Then we would have

r�C, �, �stim� � p�C�q��, t� � g�p�C��1 � w�h��� cos ��stim� � p�C�z�� (12)

Identifying the terms of this equation with the terms of Eq. 11
yields

p�C� � F1max�C�

p�C�z � �1 � w�DC�C� � 	eff (13)

Together these imply the following simple condition that, if
satisfied for some constant k � z/(1 � w), guarantees that the
response is contrast invariant

kF1max�C� � DC�C� � 	eff/�w � 1� (14)

Equation 14 implies growth of the DC term with contrast,
and hence can only hold for contrasts above 5%, for which
LGN firing rates rectify at 0 so that their mean rates increase
with contrast. This equation also demonstrates that the inhib-
itory strength w determines the width of the tuning curve.
Focusing on the optimal phase of the response [cos (�stim) �
1], suprathreshold responses require h(�) � k(w � 1)/(w � 1).
For larger values of inhibitory strength w, h(�) has to be closer
to its maximum value before threshold is crossed, i.e., tuning
width is narrower.

Equation 14 implies a strong version of contrast-invariant
tuning. Not only is the tuning of average spike rate contrast
invariant, but the spike rate at any given phase of the response
at a given orientation multiplicatively scales with changes in
contrast.

Parameter dependence

Equation 14 is equivalent to the statement that the DC and
F1 terms have the same shape as functions of contrast, up to a
scale factor determined by k and an offset determined by
	eff/(w � 1). Using Eqs. 5 and 6, Eq. 14 can be rewritten

����0�a0
avg�C� � k����f stim�, 0��a1

diff�C� � 	eff/�w � 1� (15)

Equation 15, similarly to Eq. 14, implies that a0
avg(C) and

a1
diff(C) must have the same shape as functions of contrast, up

to a scale factor and offset. Using our linear-rectified model of
LGN response, we can plot a0

avg(C) and a1
diff(C) versus contrast

C (Fig. 3A). After a suitable scaling and offset, the two overlap

FIG. 3. The condition for contrast invariance is satisfied above 5% Con-
trast. A: a0

avg and a1
diff as functions of contrast for the linear rectified LGN

responses to drifting sinusoidal gratings shown in Fig. 1. B: a0
avg(C) and a

rescaled and offset version of a1
diff(C) [0.56 � 4.16a1

diff(C) � determined by a
linear regression calculated at 50 contrasts equally spaced on a log scale
between 5 and 100% contrast].
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almost perfectly at contrasts above 5% (Fig. 3B), and thus the
condition for contrast invariance is met at these contrasts. At
contrasts below 5%, LGN responses do not rectify and the
mean response, a0

avg(C), does not change with contrast. Since
a0

avg(C) and a1
diff(C) diverge, contrast invariance in our model

fails at low contrast. This failure will be remedied below by
consideration of the effects of noise on the response.

Figure 3 shows, for our linear-rectified model of LGN re-
sponse, that a0

avg(C) and a1
diff(C) have the same shape as a

function of contrast. As a result, Eq. 15 can be satisfied and
contrast invariance achieved, provided the two parameters of
our model, the inhibitory strength w and the effective threshold
	eff, are chosen to satisfy Eq. 15 for some constant k. To
determine the robustness of our model, we simply varied these
two parameters and measured the resulting contrast depen-
dence of orientation tuning. We consider three levels of inhi-
bition (left to right columns of Fig. 4) and three levels of
effective threshold (thick, thin, and dashed lines in Fig. 4,
where the thick line represents the optimal threshold for
achieving contrast-invariant tuning for that level of inhibition).
The orientation tuning width, as measured by half width at half
height of the orientation tuning curve, is contrast invariant
down to about 5% contrast for the optimal threshold, as ex-
pected (Fig. 4B). With nonoptimal thresholds, modest devia-
tions from contrast invariance arise in the range of 5–10%
contrast.

Contrast invariance: an intuitive explanation

From Fig. 4A we can obtain an intuitive picture of how our
model achieves contrast-invariant orientation tuning in the
higher-contrast regime. Since the magnitude of the input mod-
ulation increases with increasing contrast, the tuned component
of the total input also increases. However, with dominant
inhibition, the mean input decreases with increasing contrast,
so that the growing tuned component rides on a “sinking”
untuned platform. Thus there will be some orientation where
the input tuning curve for a higher contrast stimulus will cross
the corresponding curve for a low contrast stimulus (Fig. 4A).
Placing spike threshold at the level where the contrast-depen-
dent tuning curves cross then yields contrast-invariant re-
sponses (Fig. 4, A and B, thick lines). Note that as the level of

inhibition increases, the crossing point of the input tuning
curves occurs closer to the peak, resulting in narrower tuning.

The fact that this crossing point occurs at the same orienta-
tion across a range of contrasts is exactly equivalent to the
condition that a0

avg(C) and a1
diff(C) have the same shape as

functions of contrast. Figure 3 shows that a0
avg(C) and a1

diff(C)
do indeed have the same shape as functions of contrast (at
contrasts above 5%), at least for a particular model of LGN
response. To determine whether contrast invariance is likely to
hold for a range of models, it is important to understand the
underlying reasons why a0

avg(C) and a1
diff(C) have the same

shape as functions of contrast. The answer becomes clear if we
consider a0

avg and a1
diff not as functions of contrast, but as

functions of the peak of the LGN response. At high contrast,
our model LGN responses are reasonably well-approximated
by a half-wave rectified sinusoid. Therefore a0

avg and a1
diff

should both be nearly linear functions of the peak LGN re-
sponse, which implies that they both have the same shape as a
function of contrast. The dependence of a0

avg and a1
diff on peak

LGN amplitude is plotted in Fig. 5, and indeed both show
nearly linear dependence at contrasts above 5%. While this was
computed using our linear-rectified LGN model, the result is
more general: as long as the LGN response can be approxi-
mated as a rounded “hump” of activity that does not drastically
alter its shape with changes in contrast, the DC and F1 will
grow nearly linearly with the size of the hump. Since sensitiv-
ity to the exact placement of threshold is weak, contrast in-
variance is expected to hold for a wide range of models in
which LGN responses rectify.

Given this intuitive picture, it is clear that the crucial role for
inhibition in our model is to counteract the untuned component
of LGN excitation and convert it into an untuned suppression
that acts like a contrast-dependent threshold. In our push-pull
model, this inhibition comes from the cell’s antiphase partner
and is directly driven by the untuned component of the LGN
input. Other sources of this inhibition are possible, such as
complex inhibitory cells that are untuned for orientation
(Hirsch et al. 2000), or inhibition coming from simple cells
having a range of spatial phases (McLaughlin et al. 2000;
Wielaard et al. 2001) (see DISCUSSION). The key properties of
the inhibition for our model are that it should be able to cancel
the large, contrast-dependent LGN input expected at the null

FIG. 4. Dependence of contrast invariance on the 2 model
parameters, w and 	eff, using the linear rectified model of
response to drifting sinusoidal gratings of Fig. 1. A: peak input
as a function of orientation at 5 different contrasts (2, 4, 8, 16,
and 64%) for 3 different levels of inhibition (left: w � 3;
middle: w � 6; right: w � 9). All plots are shown with
background level of input subtracted. Units chosen so that the
modulation of the excitatory input for an optimal stimulus has
unit magnitude [F1max(100)h(0) � 1]. The 3 horizontal lines
show 3 possible levels of effective threshold 	eff. The thick line
represents the optimal threshold as defined by linear regression
as in Fig. 3B. The thin and dashed lines deviate from this
optimal by �0.1(1 � w)F1max(100), i.e., �10% of the total
input modulation at 100% contrast. B: orientation tuning half-
width as a function of contrast for the 3 levels of effective
threshold shown in A. Peak inputs were calculated using Eq. 10
with �stim � 1. Halfwidths were calculated from tuning curves
constructed by integrating Eq. 11 over a complete cycle.
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orientation, and should result in a net inhibition having a
similar contrast dependence as that of the modulated compo-
nent of the total LGN input.

C O N T R A S T - I N V A R I A N T O R I E N T A T I O N

T U N I N G I I : L O W - C O N T R A S T R E G I M E

Thus far we have shown that the threshold nonlinearity in
the LGN, combined with strong push-pull inhibition, can be
used to counteract the threshold-induced broadening of orien-
tation tuning in cortical simple cells. Since the model relies in
a crucial way on the rectification of LGN response, the model
fails at low contrasts where LGN responses do not rectify.
However, in this regime, where stimulus-induced LGN input is
small and linear in contrast, the effects of noise on the spike
threshold can yield contrast-invariant tuning.

We examine a model in which cortical spiking is governed
by a rectified linear output function, and in which additive
Gaussian noise is added to the stimulus-induced input (Amit
and Tsodyks 1991; see also Abeles 1991). The output firing
rate is then the mean rate averaged over the distribution of the
noise. Adding such noise has the effect of “smoothing” the
neuron’s input/output function (Fig. 6A) in the vicinity of
threshold, allowing some responses even when the mean input
is below threshold.3 In the regime of large inputs (far above
threshold), the noise averages out and does not alter the linear-
threshold input-output function.

Because the noise is able to boost the response to just-
subthreshold inputs, it acts to broaden orientation tuning for
low contrast stimuli. Thus comparing the peak input level (thin
lines in Fig. 6B) with the resulting spike rate (thick lines), we
find that the spike-rate tuning is significantly broader than the
rectified input at contrasts below 5%. Plotting orientation tun-
ing halfwidth versus contrast for a range of noise levels (Fig.
6C) demonstrates that this broadening counterbalances the
narrowing of tuning seen for low contrast stimuli in the ab-

sence of noise and can lead to nearly contrast-invariant re-
sponses down to contrasts below 2% (dark line).

Power-law behavior

The mechanism underlying this noise-induced contrast in-
variance is that, for perithreshold inputs, the noise smoothing
converts the rectified linear input/output function into a power-
law input/output function (Miller and Troyer 2002)

r�C, �, �stim� � �ILGN�C, �, �stim� � ILGN background�
n

With a power-law input-output function, if the input I scales
with the contrast, I(C, �) � p(C)q(�), then so too does the
output r

r�C, �� � �I�c, ���n � �p�C�q����n � �p�C��n�q����n � p̂�C�q̂��� (16)

Thus, given a power law, contrast-invariant input tuning im-
plies contrast-invariant output tuning; this has previously been
exploited in simple phenomenological models of cortical re-
sponse (Albrecht and Geisler 1991; Heeger 1992).

For low contrasts, before LGN responses rectify, we expect
the LGN input to scale with contrast. This can be seen from the
fact that at these contrasts, the DC component does not change
from background, so the input is given by a function of contrast
times a function of orientation

ILGN�C, �, �stim� � ILGN background � �1 � w�F1max�C�h��� cos ��stim�

Thus, if noise creates a power-law input-output function at
these low contrasts, then we expect contrast-invariant orienta-
tion tuning at these contrasts.

3 Given the standard deviation of the noise �, the spike threshold 	, and the
gain g, one can explicitly calculate the output firing rate as a function of the
mean level of input I: r�g(I�	)/2 [1�erf(I�	/��2)]�g�/�2� e�(I�	)2

/
2�2, where erf is the error function, erf (x)�2/�� �0

x dy e�y2
.

FIG. 5. a0
avg and a1

diff vs. peak amplitude of the ON/OFF-averaged component
of LGN response {[ONpeak(C) � OFFpeak(C)]/2}, under the response model of
Fig. 1. Contrasts corresponding to the given amplitudes are shown below plot.
Dotted lines show best linear fit to 50 values of contrast spread evenly on a log
scale from 5 to 100%. After LGN responses rectify (at contrasts above 5%),
LGN response looks like a growing “hump” of activity and both the DC (a0

avg)
and F1 (a1

diff) of the response grow linearly with the size of the hump.

FIG. 6. Noise broadens tuning at low contrast. A: linear-rectified input/
output smoothed by Gaussian noise. Input is expressed in units where
F1max(100)h(0) � 1. Increasing noise levels result in smoother functions (SD
� � {0, 0.05, 0.1, 0.2}). Note that the choice of output units is arbitrary; these
can be rescaled without altering tuning by changing the gain g. B: peak input
(thin lines) and spike rate (thick lines) obtained at 2, 3, 4, and 8% contrast (� �
0.1; w � 6) under the LGN response model of Fig. 1. Horizontal line represents
effective threshold 	eff on peak input scale, and rate of 0 Hz on output scale.
C: orientation tuning halfwidth vs. contrast for the range of noise levels shown
in A. � � 0.1 (thick lines in A and C) gives contrast-invariant tuning to below
2% contrast.
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Note that, for n � 1, the In response function sharpens output
tuning relative to input F1 tuning, with larger n yielding greater
sharpening. For higher contrasts where LGN responses rectify
and the input-output function becomes linear, the output tuning
is sharpened relative to input F1 tuning by the inhibition, with
larger inhibition yielding greater sharpening. For tuning to be
contrast invariant across the full range of contrasts, the sharp-
ening induced by these two mechanisms must be equal.

D I S C U S S I O N

There is widespread theoretical and experimental (Carandini
and Ferster 2000; Gardner et al. 1999) agreement that the
measured orientation tuning of simple cells requires relatively
strong nonlinearities of cortical origin to sharpen the broadly
tuned input from the LGN. The debate centers on which
nonlinearities are best able to account for the range of exper-
imental data. The threshold nonlinearity is perhaps the most
obvious candidate (Carandini and Ferster 2000; Ferster 1987;
Hubel and Wiesel 1962). However, in a naive threshold model,
orientation tuning is expected to broaden with increasing con-
trast.

We have analyzed a very simple model of orientation tuning
in which the threshold (or firing-rate rectification) nonlinearity
was the only nonlinearity considered. We began with a careful
analysis of the total LGN input to a cortical simple cell in
response to a sinusoidal grating, finding 1) this input is well-
approximated by a sinusoidal modulation about some mean
level; 2) the amplitude of the modulation depends on both
orientation and contrast, while that of the mean depends only
on contrast; 3) the growth of the mean input with contrast is
induced by the rectification of LGN responses; and 4) at
contrasts where rectification of LGN responses is significant,
both the mean level and the modulation amplitude grow
roughly proportionally to the peak response of typical LGN
cells.

Based on this analysis of the input, we then analyzed two
routes to contrast-invariant orientation tuning. For a linear-
threshold model of cortical spiking, we showed that contrast
invariance requires that the mean and the modulation ampli-
tude of the LGN input grow with identical shapes as a function
of contrast, which is satisfied in the regime where rectification
of LGN responses is significant. Intuitively, strong push-pull
inhibition converts the mean input into a net inhibitory input,
which eliminates the contrast-dependent broadening of tuning
expected from a simple threshold model and yields sharp,
contrast-invariant tuning. At very low contrasts, LGN rectifi-
cation does not occur. However, neuronal noise can smooth the
linear-threshold response function, yielding a power function
to a good approximation. As a result, the model again yields
sharp, contrast-invariant tuning (Miller and Troyer 2002). If
the sharpening of tuning induced by the approximate power-
law nonlinearity at lower contrasts matches the sharpening
induced by inhibition and spike threshold at higher contrasts,
this simple model can account for contrast-invariant orientation
tuning over the full range of contrasts.

Parameter dependence

Our analysis suggests that the contrast invariance of orien-
tation tuning depends on correct choice of parameters in two

respects. First, the threshold 	eff must be chosen to satisfy the
analytic condition for contrast invariance in the high-contrast
regime. However, we showed here in numerical simulations
that the resulting contrast invariance of tuning, as measured by
the half-width at half height of the orientation tuning curve, is
relatively insensitive to the exact placement of spike threshold.
Second, parameter tuning seems required to match tuning
width at very low contrasts, where sharpening of tuning is
determined by the exponent in the power-law response func-
tion, to tuning width at higher contrasts, where sharpening of
tuning is determined by the strength of inhibition.

The analysis of the simple model studied here may under-
estimate the robustness with which dominant antiphase inhibi-
tion and neural noise achieve contrast-invariant tuning. In our
previous simulations of a more biophysically realistic network
model, we did not tune threshold or noise levels,4 yet contrast-
invariant tuning resulted down to very low contrasts and across
a range of inhibition strengths (see Fig. 5A of Troyer et al.
1998; orientation tuning broadened slightly at the lowest con-
trast studied, 2.5%, but such broadening at very low contrasts
is also suggested by the experimental data, Skottun et al. 1987).

Alternative models

The two nonlinear mechanisms considered here—1) linear
LGN input and a nonlinear (power-law) cortical transfer func-
tion, and 2) nonlinear LGN input (rectified, so that the mean
grows with contrast), strong push-pull inhibition, and a linear-
threshold cortical transfer function—can be contrasted with a
third class of nonlinear models. These models rely on the
interaction between the threshold nonlinearity and strong cen-
ter-surround connectivity within the cortex to achieve contrast-
invariant tuning (Ben-Yishai et al. 1995; Somers et al. 1995).
These models use recurrent dynamics that result in an “activity
bubble” of cortical response, whose shape is determined by the
pattern of intracortical connections in a manner largely inde-
pendent of the pattern of LGN input. The shape of this activity
bubble in turn determines the shape of the orientation tuning
curve. As a result, orientation tuning is invariant to changes in
the pattern of LGN input, and in particular is invariant to
changes in stimulus contrast. However, these models are in-
consistent with a number of experimental results demonstrating
basic linear elements of simple cell receptive fields. In partic-
ular, there is a correspondence between the linear component
of response as measured with spatially localized stimuli and
with drifting sinusoidal gratings (Gardner et al. 1999; Jones
and Palmer 1987a; Lampl et al. 2001; Movshon et al. 1978).
Moreover, orientation tuning is not independent of all input
parameters. Rather, tuning depends on the spatial frequency of
oriented gratings (Hammond and Pomfrett 1990; Vidyasagar
and Sigüenza 1985; Webster and De Valois 1985) and the
length of oriented bars (Vogels and Orban 1990) in the manner
predicted by the present model (Troyer et al. 1998): stimuli that
evoke narrower tuning of the LGN input modulation evoke
narrower tuning of the cortical spike response.

4 Spike threshold was set to �52.5 mV, and then sufficient nonspecific
background excitatory conductances were injected to produce low, physiolog-
ical levels of spontaneous spiking activity in excitatory cells at the “default”
level of inhibition. This amounts to setting threshold in units of the noise.
Neither threshold nor the amount of injected background conductance were
varied as the strength of inhibition was changed.
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A recent model of monkey layer 4 (McLaughlin et al. 2000;
Wielaard et al. 2001) also relies on strong feed-forward inhi-
bition to cancel the nonlinear component of LGN input, but
assumes that this inhibition has no phase specificity. This
accords with the lack of phase specificity of transient inhibitory
responses reported by some workers (Borg-Graham et al.
1998) but not by others (Ferster 1988; Hirsch et al. 1998).
Phase-nonspecific inhibition would contribute an inhibitory
DC component, but no F1 component, to the response to a
periodic grating. Thus the effect of including such inhibition in
our model would be to replace the factor (1 � w) multiplying
DC(C) in Eq. 10 by (1 � w � wnon), where w still represents
the phase-specific component of inhibition and wnon represents
the phase-nonspecific component. This in turn would cause the
condition for contrast-invariant tuning, Eq. 14, to be modified
simply by replacing (w � 1) with (w � wnon � 1). Thus
phase-nonspecific inhibition is equally as effective as phase-
specific inhibition in achieving contrast-invariant tuning. The
main difference between the two is that phase-specific inhibi-
tion enhances the response to a preferred stimulus (it adds to
the F1 while subtracting from the DC), while phase-nonspe-
cific inhibition equally suppresses responses to a preferred or
nonpreferred stimulus (it does not add to the F1 while sub-
tracting from the DC). Thus substituting phase-nonspecific for
phase-specific inhibition will reduce responses and sharpen
orientation tuning by rendering more orientations subthreshold.

A key prediction of our model is that at least a subset of
layer 4 inhibitory cells should respond in a contrast-dependent
manner to all orientations (Troyer et al. 1998). Inhibition from
these cells is necessary to prevent the untuned component of
the LGN input from driving spiking in tuned simple cells at
orientations far from the cell’s preferred orientation. Hirsch et
al. (2000) recently reported two classes of inhibitory cells in
cat V1 layer 4: simple cells that appeared to have good orien-
tation tuning and complex cells that were essentially untuned
for orientation. Such complex cells could provide the contrast-
dependent untuned inhibition required by our formulation,
although in a different form than used in our model. The
inhibition from these complex cells would contribute to the DC
but not to the F1, just as phase-nonspecific inhibition would.
The simple inhibitory cells would provide phase-specific,
push-pull inhibition at orientations around the preferred but
would not spike far from the preferred orientation, presumably
because they are inhibited by the complex cells in a manner
similar to excitatory simple cells.

Voltage tuning versus input tuning

Anderson et al. (2000b) have published experimental data
indicating that the full range of contrast responses lies in a
noise-dominated regime. They found that voltage noise was
large, e.g., rms 5 mV, comparable with the voltage DC and F1
at high contrast, which were each 5–10 mV. They also found
that the mean and modulation of the voltage response each had
similar orientation tuning and that the tuning of each simply
scaled with contrast. They showed that this, the large noise,
and a linear-threshold model for converting voltage responses
to spiking responses could yield contrast-invariant spiking
responses, much as in our low-contrast regime. At first glance
it might appear that this makes our analysis of the high-contrast
regime irrelevant, because the noise-smoothed part of the in-

put/output curve applies over the full range of contrasts. How-
ever, the model proposed by Anderson et al. begins with the
observed voltage responses; it does not address the mecha-
nisms by which the LGN input drive is converted into the
observed tuning and contrast scaling of the voltage.

In the model analyzed here, spiking output is assumed to be
a rectified linear function of a cell’s synaptic input, smoothed
by noise. The intermediate step of conversion of synaptic input
into membrane voltage is not addressed. In particular, the
model does not include the nonlinearity contributed by synap-
tic reversal potentials. This nonlinearity should not have much
effect on spiking responses, since deviations from linear be-
havior are small at voltages near and above threshold (Holt and
Koch 1997). However, near the inhibitory reversal potential,
inhibitory drive is significantly reduced, but excitatory drive is
relatively unchanged. Thus a linear model would systemati-
cally overestimate the degree of membrane hyperpolarization
for subthreshold ranges of voltage.

Nonetheless, our analysis of the LGN input has interesting
implications for understanding the results of Anderson et al.
(2000b). We focus on two significant results. First, Anderson et
al. (2000b) found little stimulus-induced voltage change from
rest at any contrast in response to stimuli of the null orientation
(the orientation orthogonal to the preferred), a result also seen
by Carandini and Ferster (2000). Our analysis suggests that
null-oriented stimuli should evoke significant LGN excitation
that grows with contrast.5 To prevent significant depolarization
from rest, this excitation must be balanced by an equal amount
of inhibitory current. However, equivalence of excitatory and
inhibitory currents near rest translates into a dominance of
inhibition for membrane potentials near threshold. Thus the
lack of depolarization to stimuli at the null orientation suggests
that the mean input in response to these stimuli is inhibition
dominated, as required by our model.

Second, the mean level of membrane depolarization (the
voltage DC) in simple cells is tuned for orientation and has
tuning similar to that of the voltage modulation (the voltage
F1) (Anderson et al. 2000b; Carandini and Ferster 2000). The
orientation tuning of the mean voltage response may be in-
duced by two nonlinearities interacting with the voltage mod-
ulation. First, the inhibitory reversal potential prevents much
hyperpolarization from rest, but does not limit depolarizations,
so that voltage modulations will be primarily depolarizing from
rest. Second, the tuned spiking response driven by the modu-
lation of the LGN input will be amplified by input from other
cortical cells in the same or nearby orientation columns that are
also driven to spike (Anderson et al. 2000a; Douglas et al.
1995; Ferster 1986; Troyer et al. 1998). The net depolarization
from each of these nonlinearities should cause the voltage DC
to inherit orientation tuning similar to that of the voltage F1.

Conclusion

A number of factors can contribute to the orientation tuning
of voltage and spiking in cortical simple cells. These include

5 Yet another complication is that the mean LGN input may be suppressed
by frequency-dependent synaptic depression at lower temporal frequencies,
e.g., 2 Hz (Krukowski 2000). However, at higher temporal frequencies, e.g., 8
Hz, the effects of the untuned mean LGN input should be strong. Anderson et
al. (2000b) and Carandini and Ferster (2000) studied only lower temporal
frequency stimuli.
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nonlinearities in the LGN input, the threshold nonlinearity and
its possible smoothing by noise, antiphase inhibition, phase-
nonspecific or orientation-untuned inhibition, reversal potential
nonlinearities, and the input from other cortical excitatory
cells. We have addressed the first three factors in a model that
is simple enough to allow analysis, and that emphasizes the
role played by contrast-dependent nonlinearities in the LGN.
The results of Anderson et al. (2000b) suggest that noise
smoothing plays a key role in the contrast invariance of orien-
tation tuning over the full range of contrasts, which differs
from the model presented here. Nonetheless, our analysis of the
LGN suggests the need for dominant feed-forward inhibition
that eliminates response to the DC component of the LGN
input, while also pointing out a route to contrast-invariant
tuning for stimuli that might push a cell beyond the noise-
smoothed regime. More generally, our analysis suggests that
decomposing simple cell input into ON/OFF-averaged and ON/
OFF-specific components may be a useful step toward a more
complete understanding of orientation tuning in layer 4.
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